Real-time Traffic Allocation Using Learning Automata
نویسنده
چکیده
We present a new fixed structure, multi-action, multi-response learning automaton and use it to allocate arriving traffic at a multimedia network. For each source-destination pair, for each traffic type, a learning automaton allocates every new arriving call on one of the available routes from source to destination or rejects it. The state diagram of the learning automaton has a star shape. Each branch of the star is associated with a particular route. Depending on how much "good" the traffic performance is on a route, the automaton moves deeper in the corresponding branch. On the other hand, depending on how much "bad" it is, the automaton moves out of this branch. Finally, we provide several performance nietrics to characterize the traffic performance on a route as "good" or "bad".
منابع مشابه
Improving Agent Performance for Multi-Resource Negotiation Using Learning Automata and Case-Based Reasoning
In electronic commerce markets, agents often should acquire multiple resources to fulfil a high-level task. In order to attain such resources they need to compete with each other. In multi-agent environments, in which competition is involved, negotiation would be an interaction between agents in order to reach an agreement on resource allocation and to be coordinated with each other. In recent ...
متن کاملAn Adaptive Congestion Alleviating Protocol for Healthcare Applications in Wireless Body Sensor Networks: Learning Automata Approach
Wireless Body Sensor Networks (WBSNs) involve a convergence of biosensors, wireless communication and networks technologies. WBSN enables real-time healthcare services to users. Wireless sensors can be used to monitor patients’ physical conditions and transfer real time vital signs to the emergency center or individual doctors. Wireless networks are subject to more packet loss and congestion. T...
متن کاملUsing an Evaluator Fixed Structure Learning Automata in Sampling of Social Networks
Social networks are streaming, diverse and include a wide range of edges so that continuously evolves over time and formed by the activities among users (such as tweets, emails, etc.), where each activity among its users, adds an edge to the network graph. Despite their popularities, the dynamicity and large size of most social networks make it difficult or impossible to study the entire networ...
متن کاملCycle Time Optimization of Processes Using an Entropy-Based Learning for Task Allocation
Cycle time optimization could be one of the great challenges in business process management. Although there is much research on this subject, task similarities have been paid little attention. In this paper, a new approach is proposed to optimize cycle time by minimizing entropy of work lists in resource allocation while keeping workloads balanced. The idea of the entropy of work lists comes fr...
متن کاملLA-CWSN: A learning automata-based cognitive wireless sensor networks
Cognitive networking deals with using cognition to the entire network protocol stack to achieve stackwide, as well as network-wide performance goals; unlike cognitive radios that apply cognition only at the physical layer to overcome the problem of spectrum scarcity. Adding cognition to the existing Wireless Sensor Networks (WSNs) with a cognitive networking approach brings about many benefits....
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1997